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Abstract 

This paper proposes a new computational method based on vector and quaternionic calculus and the 
properties of dual and multidual algebra for analysis of the higher-order acceleration field of spatial kinematics 
chains. First, a closed-form coordinate-free solution is presented, generated by the morphism between the Lie 
group of the rigid body displacements and the unit multidual quaternions. The solution is implemented for higher-
order kinematics analysis of lower-pair serial chains. A general method for studying the vector field of arbitrary 
higher-order accelerations is described. The “automatic differentiation” feature of the multidual and hyper-
multidual functions is used to obtain the higher-order derivative of a rigid body pose. This is obtained with no 
need for further differentiation of the body pose concerning time. It is proved that all information regarding the 
properties of the distribution of higher-order accelerations is contained in the specified unit hyper-multidual 
quaternion. 
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1 Introduction 

Studying the displacement and motion of rigid bodies is one of the principal issues in different research 
domains like robotics, theoretical kinematics, computer vision, astrodynamics, etc. A rigid body displacement is a 
transformation composed of a rotation and a translation. The key to the modern approach starts with the property 
of rigid body displacements group of forming a Lie group, accompanied by its Lie algebra. In modern terminology, 
the Lie group of rigid body displacement, SE (3), is the semidirect product of the rotation group 𝑆𝕆!with the 
translation group. Also, the manifold is connected but not simply connected, and the manifold 𝑆𝐸 (3) is connected 
but not simply connected or compact. Recognizing the Lie group nature of rigid body motions and the Lie algebra 
nature of screws, all authors derived closed-form expressions of higher-order time derivatives of a twist [1]. Recent 
interest in explicit compact relations for higher-order time derivatives of twists (accelerations, jerk, jounce/snap, 
etc.) stems from advanced methods for the optimal trajectory planning and model-based control of robots and 
general multibody systems [1-2]. A previous result offers an isomorphism between the Lie group 𝑆𝐸 (3) with the 
group of the orthogonal dual tensors and Lie algebra, se (3), of the Lie algebra of dual vectors (with vector product 
as an internal operation). The results obtained using dual algebras completely solve the problem of finding the 
field of higher-order accelerations utilizing the results obtained by the previous papers [3-7]. 

Moreover, the results can be extended for the multidual [7] and hyper-multidual commutative algebras [8]. 
This paper proposes a novel product of the exponential formula of hyper-multidual quaternions for studying the 
higher-order acceleration fields of rigid body motion of serial lower-pair kinematic chains using the calculus with 
multidual vectors and quaternions. The “automatic differentiation” feature of the multidual and hyper-multidual 
functions is used to obtain the higher-order derivative of a rigid body pose. This is obtained without requiring 
further differentiation of the body pose concerning time. Furthermore, it is proved that all information regarding 
the properties of the distribution of higher-order accelerations is contained in the specified unit hyper-multidual 
quaternion. 



 

 

2 Higher-order kinematics of rigid body and instantaneous invariants 

Let be a rigid motion given by a curve in Lie group of the rigid body displacements SE (3) given by the 

homogenous matrix 𝐠 = &𝐑 𝛒
𝟎 1+ where 𝐑 ∈ 𝑆𝕆! is a proper orthogonal tensor [3], [4],[ 6], 𝐑 = 𝐑(𝑡), and 𝛒 =

𝛒(𝑡) a vector functions of a time variable, n-time differentiable. As shown in [3], [4], [9], the 𝑛-th order 
acceleration of a point of the rigid body given by the position vector 𝐫 in the fixed reference frame can be computed 
with the following equation [4]: 

𝐚𝐫
[$] = 𝐚$ +𝚽$𝐫; 𝑛 ∈ ℕ (1) 

where the invariants tensor 𝚽$ and the vector 𝐚$ is given by the below equations: 

𝚽$ = 𝐑($)𝐑( , (2) 

𝐚$ = 𝛒($) −𝚽$𝛒. (3) 

Tensor 𝚽) and vector 𝐚) generalize the notions of velocity / acceleration tensor respectively velocity / 
acceleration invariant. They are fundamental in the study of the vector field of the n*+ order accelerations. The 
recursive formulas for computing 𝚽) and 𝐚) are [4]: 

;𝚽$,- = �̇�$ +𝚽$𝚽-
𝐚$,- = �̇�$ +𝚽$𝐚-

, 𝑛 ≥ 1,	 

𝚽- = 𝛚@, 𝐚- = 𝐯. −𝛚@𝛒. ≜ 𝐯 
(4) 

The pair of vectors (𝛚, 𝐯) is also known as the spatial twist of rigid body 
In [3], [4], [9], an iterative procedure is described to determine the instantaneous tensor 	𝚽$	, and vector 𝐚$ 

using the time derivative of spatial twist of rigid body motion, [4], [9]:  
Theorem 1. [4] There is a unique polynomial with the coefficients in the non-commutative ring of Euclidian 

second order tensors 𝐋(𝕍!, 𝕍!) such that the vector respectively the tensor invariants of the 𝑛/0 order 
accelerations will be written as: 

𝐚$ = 𝐏$(𝐯)
𝚽$ = 𝐏$(𝛚@)	

, 𝑛 ∈ ℕ∗ (5) 

where 𝐏$ fulfills the relationship of recurrence: 

;𝐏$,- = 𝐃𝐏$ + 𝐏$(𝛚@), 𝑛 ∈ ℕ∗
𝐏- = 𝐈  (6) 

with 𝐃 = 2
2/

 the derivative operator with respect to time.  

For n=1, 4, it follows: 
• the velocity vector field invariants: 

I
𝐚- = 𝐯
𝚽- = 𝛚@  

𝐚𝛒
[-] = 𝐯 +𝛚@𝛒 

(7) 

• the acceleration vector field invariants: 

;
𝐚4 = �̇� +𝛚@𝐯
𝚽4 = 𝛚@̇ +𝛚@4 

𝐚𝛒
[4] = �̇� +𝛚@𝐯 + (𝛚@̇ + 𝛚@4)𝛒 

(81) 



 

 

• the jerk vector field invariants:  

J 𝐚! = �̈� +𝛚@𝐯 + 2𝛚@̇𝐯 +𝛚@4𝐯
𝚽! = 𝛚@̈ +𝛚@𝛚@̇ + 2𝛚@̇𝛚@ +𝛚@!

 

𝐚𝛒
[!] = �̈� +𝛚@�̇� + 2𝛚@̇𝐯 +𝛚@4𝐯 + (𝛚@̈ + 𝛚@𝛚@̇ + 2𝛚@̇𝛚@ +𝛚@!)𝛒. 

(9) 

The higher-order time differentiation of spatial twist of rigid body motion solves completely the problem of 
determining the field of the higher- order acceleration of rigid motion [4-8]. Next, we present a new non-iterative 
procedure that permits the determination of the higher-order	 accelerations	 field	 using	 quaternions	 set	 in	
nilpotent	algebra.	

3 Mathematical preliminaries of multidual algebra, function, vectors, and quaternions 

Let be ℝ =ℝ+ ε5ℝ; ε5 ≠ 0, ε54 = 0,	the set of dual numbers, and n ∈ ℕ, n ≥ 1, a natural number [3], [10]. 
We will introduce the set of hyper-multidual (HMD) numbers by:  ℝQ  =ℝ+ εℝ +⋯ε)ℝ; 	ε ≠ 0, ε),- = 0. For 
n=1, on obtain hyper-dual numbers [9]. The se of multidual (MD) number is introduced by ℝQ = ℝ+ 𝜀ℝ +⋯+
𝜀$ℝ; 𝜀 ≠ 0, 𝜀$,- = 0. It can be easily proved that the set ℝQ  with the addition operation and multiplication is a 
commutative ring with unit. An element from ℝQ  is either invertible or zero divisor [7], [8]. The linear ℝ-algebra 
ℝQ  is the direct product of dual algebra 	ℝ and multidual algebra ℝQ . ℝQ	has a structure of 2(n+1) −dimensional 
associative, commutative, and unitary generalized Clifford Algebra, and ℝQ  =ℝQ + ε5ℝQ ; ε5 ≠ 0, ε54 = 0. ℝQ  is 
subalgebra of ℝQ  by dimension n+1 over the real numbers field ℝ. 

Let be f: 𝕀 ⊆ ℝ → ℝ, f = fYx[ a n-times differentiable dual function of dual variable [8]. We will define the 
HMD function of HMD variable x\ =x + ∑ x6ε6)

67- , f: �̂� ⊆ ℝQ → ℝQ, f = fYx\[ by equation:  

fYx\[ = fYx[ +_
∆6(x\)
k! f (6)Yx[,

)

67-

 (10) 

here we noted by ∆(x\) = x\ − x = ∑ x6ε6)
67- , and (∆(x\))8 = 0; p ≥ n + 1. ∆(x\) is multidual part of HDM 

number x\. 

Using the Eq. (10), we will define the following MD functions of MD variable: 

sinx\ = sin x +_
∆6(x\)
𝑘!

$

97-

sin gx + 𝑘
𝜋
2i, (11) 

cosx\ = cos x +_
∆6(x\)
k!

$

97-

cos gx + 𝑘
𝜋
2i , (12) 

MD and HMD vectors and tensors was studied in previous papers [7], [8], [10-12]. 

3.1   HDM vectors  

Let be 𝕍! = 𝕍! + 𝜀5𝕍!; 𝜀5 ≠ 0, 𝜀54 = 0,	the set of dual vectors from three-dimensional Euclidean space. We 
will introduce the set of dual vectors in nilpotent algebra by: 	𝕍Q! = 𝕍! + 𝜀𝕍! +⋯+ 𝜀$𝕍!; 𝜀 ≠ 0, 𝜀$,- = 0 (for 
n=1, obtain hyper-dual vectors [5]). 𝕍Q! will be denote the set of hyper-dual (HDM) vectors. 

A generic vector from 𝕍Q! will be written as below: 

𝐚\ = 𝐚 + 𝐚-𝜀 +⋯+ 𝐚$𝜀$; 𝐚, 𝐚9 ∈ 𝕍!
𝐛m = 𝐛 + 𝐛-𝜀 +⋯+ 𝐛$𝜀$; 𝐛, 𝐛9 ∈ 𝕍!

 (13) 

We will define the scalar product respectively the cross product of two vectors from 𝕍Q! by:  



 

 

𝐚\ ∙ 𝐛m =__Y𝐚8 ∙ 𝐛9:8[𝜀9
9

875

$

975

 (14) 

𝐚\ × 𝐛m =__Y𝐚8 × 𝐛9:8[𝜀9
9

875

$

975

 (15) 

The triple vector product of three vectors 𝐚\, 𝐛m , �̂� is defined by 〈𝐚\, 𝐛m , �̂�〉 = 𝐚\ ∙ Y𝐛m × �̂�[. 

All the three vectors 𝐞\-, 𝐞\4, 𝐞\! represents a basis in the free module 𝕍Q! if and only if 𝑅𝑒(𝐞\-, 𝐞\4, 𝐞\!) ≠ 0.  

3.2   HDM Euclidean tensors  

An ℝQ  - linear application of 𝕍Q! into 𝕍Q! is called a Euclidean tensor:  

𝐓QY𝜆m-𝐯\- + 𝜆m4𝐯\4[ = 𝜆m-𝐓Q(𝐯\-) + 𝜆m4𝐓Q(𝐯\4); 𝜆m-, 𝜆m4 ∈ ℝQ, ; ∀𝐯\-, 𝐯\4 ∈ 𝕍Q!. (16) 

Let 𝐋Y𝕍Q!, 𝕍Q![ be the set of tensors, then any 𝐓Q ∈ 𝐋Y𝕍Q!, 𝕍Q![, the transposed tensor denoted by 𝐓Q( is defined by 
𝐯\- ∙ Y𝐓Q𝐯\4[ = 𝐯\4 ∙ Y𝐓Q(𝐯\-[; ∀𝐯\-, 𝐯\4 ∈ 𝕍Q!. 

While ∀𝐯\-, 𝐯\4, 𝐯\! ∈ 𝕍Q!, 𝑅𝑒(〈𝐯\-, 𝐯\4, 𝐯\!〉) ≠ 0, the determinant is: 

〈𝐓Q𝐯\-, 𝐓Q𝐯\4, 𝐓Q𝐯\!〉 = det𝐓Q(𝐯\-, 𝐯\4, 𝐯\!). (17) 

For any vector 𝐚\ ∈ 𝕍Q!, the associated skew-symmetric tensor will be denoted by 𝐚\ × and will be defined 
(𝐚\ ×)𝐛m = 𝐚\ × 𝐛m , ∀𝐛m ∈ 𝕍Q!. 

The previous definition can be directly transposed into the following result: for any skew-symmetric tensor 𝐀Q ∈
𝐋Y𝕍Q!, 𝕍Q![, 𝐀Q = −𝐀Q(, a uniquely defined vector 𝐚\ = 𝑣𝑒𝑐𝑡Y𝐀Q[, 𝐚\ ∈ 𝕍Q! exists in order to have 𝐀Q𝐛m = 𝐚\ × 𝐛m , ∀𝐛m ∈
𝕍Q!. The set of skew-symmetric tensors is structured as a free ℝQ  - module of rank 3 and is isomorphic with 𝕍

Q!. 

3.3   HDM quaternions 

A dual HMD quaternion can be defined as an associated pair of an HMD scalar quantity and a free HMD 
vector: 

𝐪� = gq\, 𝐪�i , q\ ∈ ℝQ, 𝐪� ∈ 𝕍Q!, (18) 

The set of HMD quaternions will be denoted  𝐐Q	and is a ℝQ -module of rank 4, if HMD quaternion addition and 
multiplication with HDM numbers are considered.  

The product of two HDM quaternions 𝐪�- = gq\-, 𝐪�-i and 𝐪�4 = gq\4, 𝐪�4i is defined by  

𝐪�-𝐪�4 = gq\- ∙ q\4			 − 𝐪�- ∙ 𝐪�4, q\-𝐪�4 + q\4𝐪�- + 𝐪�- × 𝐪�4i	. (19) 

Considering the above properties results that the ℝQ -module 𝐐Q becomes an associative, non-commutative linear 
dual algebra of order 4 over the ring of HMD numbers. For any HMD quaternion defined by Eq. (18), the 

followings can be computed: the conjugate denoted by 𝐪�∗ = gq\,−𝐪�i and the norm denoted by �𝐪��
4
= 𝐪�𝐪�∗. For 

�𝐪�� = 1, any HDM quaternion is called unit HDM quaternion. Regarded solely as a free ℝQ -module, 𝐐Q  contains 

two remarkable sub-modules: 𝐐ℝ and 𝐐𝕍>!. The first one composed from pairs gq\, 𝟎Qi , q\ ∈ ℝQ , isomorphic with ℝQ , 

and the second one, containing the pairs Y0, 𝐪�		[, 𝐪� ∈ 𝕍Q!, isomorphic with 𝕍Q!.  



 

 

Also, any HMD quaternion can be written as 𝐪� = q\ + 𝐪�, where q\ ≜ gq\, 𝟎i and 𝐪� 	≜ Y0, 𝐪�, [, or 𝐪� = 𝐪� + ε5𝐪�5, 
where 𝐪�,	𝐪�5 are MD quaternions.  

Let 𝕌Q  denote the set of unit MD quaternions and 𝕌Q denotes the set of units HDM quaternions. For any 𝐪� ∈ 𝕌Q, 
the following representation is valid: 

𝐪� = �1 + ε5
1
2𝛒��𝐪�	, 

(20) 

where 𝛒� ∈ 𝕍Q!	is MD vector and 𝐪� ∈ 𝕌Q is unit MD quaternion. Also, a HDM number 𝛼\ and a unit HDM vector 𝐮� 
exist so that: 

𝐪� = cos
α�
2 + 𝐮�𝑠𝑖𝑛

𝛼\
2 = exp �

𝛼\
2 𝐮��, 

(21) 

where α� and 𝐮� are the natural HDM invariants of the rigid body motion. 

Theorem 2. The adjoint application: 

	𝐀𝐝𝐪@: 𝕍Q! → 𝕍Q!,		 

𝐀𝐝𝐪@(	) 	= 𝐪�	(	)𝐪�∗	 
(22) 

is well definited, invertible, and have the properties:		
 

𝐀𝐝𝐪@
:-(	) = 𝐪�∗(	)𝐪� (23) 

𝐀𝐝𝐪@"𝐪@# = 𝐀𝐝𝐪@"𝐀𝐝𝐪@# (24) 

Remark 1. Based on the construction of  𝕌Q  and the multiplication of dual quaternions, a direct conclusion 
is its Lie group structure (𝕍Q! being the associated Lie algebra, with the cross product between HMD vectors as 
the internal operation), which can be used to global parameterize all rigid motions. 

Using the internal structure of any element from 𝑆𝕆� ! [8] the following theorem is valid: 

Theorem 3.: The Lie groups 𝕌Q  and 𝑆𝕆� ! are linked by a surjective homomorphism: 

Θ:𝕌Q → 𝑆𝕆� !, Θ g𝐪�i = 𝐈 + 2q\	(𝐪� ×) + 2(𝐪� ×)4	; 𝐪� = q\ + 𝐪�	. (25) 

Proof. In Eq. (25) denoted by (𝐪� ×) the HMD skew-symmetric tensor [8] corresponding to the HDM vector 
𝐪�	.	Considering that any 𝐪� ∈ 𝕌 can be decomposed as in (21), results that Θ g𝐪�i = 𝑒𝑥𝑝Y𝛼\	𝐮� ×[ ∈ 𝑆𝕆� !. This shows 
that the mapping given by (25) is well defined and surjective. Using direct calculus, we can also acknowledge that 
Θg𝐪�4𝐪�-i = Θg𝐪�4iΘg𝐪�-i. Regarding surjectivity, any orthogonal HMD tensor 𝐑Q ∈ 𝑆𝕆� ! can be represented as 

in [8], 𝐑Q = 𝑒𝑥𝑝Y𝛼\	𝐮� ×[. Thus, we can find a dual quaternion 𝐪� = 𝑒𝑥𝑝 gA@
4
𝐮�i to have Θg𝐪�i = 𝐑Q, which proves 

that Θ is a surjective homomorphism. ∎ 

4 Multidual differential transform and higher-order kinematics 

So, being 𝑓: 𝐼 ⊆ ℝ → ℝ, 𝑓 = 𝑓(𝑡), a real function of real time variable, n-th differentiable, 𝑛 ∈ ℕ. To this 
function, it will be associated the multidual function of real variable 𝑓� given by the following equation: 

𝑓� = 𝑓 + 𝜀�̇� +⋯+
𝜀$

𝑛! 𝑓
($) = 𝑒B𝐃𝑓, (26) 



 

 

where 𝑒B𝐃 = 1 + 𝜀𝐃 +⋯+ B$

$!
𝐃$ with 𝐃 = 2

2/
 the derivative operator with respect to time. 

Theorem 4. [7] Being 𝑓 and 𝑔 two real function of class 𝐶$(𝐼). The following properties take place: 

𝑓 + 𝑔� = 𝑓� + 𝑔�, (27) 

𝑓𝑔� = 𝑓�𝑔�, (28) 

𝜆𝑓� = 𝜆𝑓�, ∀𝜆 ∈ ℝ, (29) 

𝑓(𝛼)� = 𝑓(𝛼�), 𝛼 ∈ 𝐶$(𝐼), (30) 

𝑓�̇ = �̇��. (31) 

Let a rigid body motion parameterization by dual orthogonal tensor, [3], [4], 𝐑 = 𝐑(𝑡) ∈ 𝑆𝕆!, ∀𝑡 ∈ 𝐼 ⊆ ℝ, 
can be defined by HMD tensor: 

𝐑� = 𝑒B𝐃𝐑, (32) 

𝐑� = 𝐈 + Ysin𝛼�[𝐮� × +Y1 − cos𝛼�[Y𝐮� ×[4 = expY𝛼�	𝐮� ×[, (33) 

where:  

𝛼� = 𝑒B𝐃𝛼, 
(34) 

𝐮� = 𝑒B𝐃𝐮, (35) 

The higher-order acceleration field of rigid body motion are univocal determined by HMD orthogonal 
tensors [7]: 

𝚿� = 𝐑�	𝐑( = (𝐈 + 𝜀5𝐚� ×)𝚽� , 
(36) 

where 

𝚽� = 𝐈 +𝚽-𝜀 +⋯+
𝚽𝒏

𝑛! 𝜀
$, (37) 

𝐚� = 𝐚-𝜀 +
𝐚4
2 𝜀

4…+
𝐚𝒏
𝑛! 𝜀

$. (38) 

The n-th order acceleration of a point of the rigid body given by the position vector 𝐫, denotes 𝐚𝐫
[$], can be 

computed with the following relation [4-6], (see Eq.1): 
 

𝐚𝐫
[$] = 𝐚$ +𝚽$𝐫; 𝑛 ∈ ℕ, n ≥ 1. (39) 

In the case of helical rigid body motion (u = const., 𝐮� = 𝐮), from Eq. (33), (36), after some algebra, results 
that [6]: 

	; 𝚽� = 𝐈 + sin∆𝛼� (𝐮 ×) + (1 − cos∆𝛼�)(𝐮 ×)4
𝐚� = ∆𝛒� − sin∆𝛼� 𝐮 × 𝛒 − (1 − cos∆𝛼�)𝐮 × (𝐮 × 𝛒), (40) 

where with ∆𝑥�	was denoted the multidual part of the time function 𝑥�. 

The calculations are considerably simplified by considering the rigid motion parametrized by the dual 
quaternion function: 𝐪 = 𝐪(𝑡) ∈ 𝐔, ∀𝑡 ∈ 𝕀 ⊆ ℝ. The relationship is easily demonstrated (see Theorem 3): 

𝚿� = 	Θg𝛗�i, (41) 



 

 

where 𝛗� = 𝐪�	𝐪∗, 𝐪 = exp(-
4
𝛼	𝐮)=cos -

4
𝛼 + 𝐮sin -

4
𝛼, 𝐪� = 𝑒B𝐃𝐪 = cos -

4
𝛼� + 𝐮� sin -

4
𝛼� = exp(-

4
𝛼�	𝐮�). In the case 

of helical rigid body motion (𝐮� = 𝐮),		𝛗� = 𝐪�	𝐪∗ = exp(-
4
𝛼�	𝐮)exp(− -

4
𝛼	𝐮	) = exp g-

4
∆𝛼�	𝐮i: 

	𝛗� == exp �
1
2∆𝛼�	𝐮� = cos(

1
2∆𝛼�) + 𝐮 sin(

1
2∆𝛼�). 

(42) 

	 The unique decomposition takes place: 

𝛗� = �𝐈 + 𝜀5
1
2𝐚
��𝛗�	, (43) 

𝚽� = Θ(𝛗�), (44) 

𝐚� = 2
𝑑
𝑑𝜀5

g𝛗�𝛗� ∗i, (45) 

 In Eq. (45) will be denote 2
2B%

Y𝐚� + 𝜀5𝐛� [ = 𝐛� .  

5 Higher-order analysis of lower-pair kinematic chains 

Consider a spatial kinematic chain of the rigid bodies 𝐶9 , 𝑘 = 0,𝑚 (fig.1). The relative motion of the rigid 
body 𝐶9 with respect to reference frame attached to 𝐶9:- is described by the orthogonal dual unit quaternion  

𝐪9:-
9, 𝑘 = 1,𝑚. 

  

Fig.1: Relative motion properties of the terminal body 𝐶F with respect to reference frame. 

The relative motion properties of the terminal body 𝐶F with respect to reference frame attached to 𝐶5 (fig.1) 
are described by the unit dual quaternion [1], [2], [7]: 



 

 

𝐪F = 𝐪-5 𝐪4- … 𝒒FF:- , (46) 

𝐪F = exp(
1
2𝛼- 𝐮-5 )exp(

1
2𝛼4 𝐮4- )…exp(

1
2𝛼F 𝐮FF:- ) (47) 

If unit dual vectors 𝐮99:- =const , 𝑘 = 	1,𝑚££££££, the spatial kinematic chain is named general mC manipulator. 
For any 𝐪 ∈ 𝐔  on denote by Ad𝐪( ∙	)=	𝐪 ( ∙ ) 𝐪�∗   the adjoint map. The following theorem can be proved: 

Theorem 5 The vector fields of higher-order acceleration on terminal body of general mC manipulator 
given by the kinematic mapping (47) it results from HMD unit dual quaternion: 

𝛗�F = exp ¥
1
2𝐮-∆𝛼�-¦ exp ¥

1
2𝐮4∆𝛼�4¦… exp ¥

1
2𝐮F∆𝛼�F¦, (48) 

where 𝐮- = 𝐮-,5 	and: 

𝐮9 = Ad 𝐪"% 𝐪#" … 𝒒&'"
&'# Y 𝐮99:- [, 𝑘 = 2,𝑚	££££££. 

(49) 

are unit dual vectors corresponding to screw joint 𝑘, and ∆𝛼�9 denote the multidual part of HMD variable 𝛼�9 , 
	𝑘 = 	1,𝑚££££££. Mapping’s exp	[-

4
𝐮9∆𝛼�9] , 𝑘 = 	1,𝑚££££££,	are polynomial and not transcendent, considering that 

(∆𝛼�9)8 = 0; 𝑝 ≥ 𝑛 +1. 

Proof. Applying to the Eq. (47) the differential transform presented in Theorem 4, we will obtain: 

𝐪�F = exp ¥
1
2𝛼�	- 𝐮-5 ¦ exp ¥

1
2𝛼�	4 𝐮4- ¦… exp	[

1
2𝛼�	F 𝐮FF:- ]. (50) 

From Equation (46) result: 

	𝐪F∗ = [ 𝐪-5 𝐪4- … 𝐪FF:- ]∗ 
(51) 

Considering that the unit HMD quaternion 𝛗�F is given by equation: 

	𝛗�F = 𝐪�F	𝐪F∗  
(52) 

From Eq. (52), Eq. (50), and Eq. (51) after some calculus and Theorem 4 results Eq (48).∎ 

Theorem 6 The vector fields of higher-order acceleration on the terminal body in this body frame of the 
general mC manipulator, given by the kinematic mapping (47), results from HMD unit dual quaternion: 

𝛗�FI = exp ª
1
2𝐯-∆𝛼�-« exp ª

1
2 𝐯4∆𝛼�4«… exp ª

1
2 𝐯F∆𝛼�F«, (53) 

where unit dual vector 𝐯9 , 𝑘 = 1,𝑚	££££££: 

𝐯9 = 𝐀𝐝[ 𝐪&
&'" 𝐪&(#

&(" … 𝐪)'"
)]∗
Y 𝐮99:- [. 

(54) 

are dual unit vectors corresponding to screw joint 𝑘, resolved in the body frame of 𝐶F. 

Proof. The higher-order acceleration field of terminal body expressed in the body frame attached to 𝐶F are 
expressed by HMD quaternion: 

𝛗�FI = 𝐪F∗ 𝐪�F. (55) 

By Eq. (50), Eq. (51), and (55) after some algebra, on obtain: 



 

 

𝛗�FI = exp ¥-
4
𝐯-∆𝛼�-¦ exp ¥

-
4
𝐯4∆𝛼�4¦… exp ¥

-
4
𝐯F∆𝛼�F¦,  (56) 

where unit dual vector 𝐯9 , 𝑘 = 1,𝑚	££££££: 

𝐯9 = 𝐀𝐝[ 𝐪&
&'" 𝐪&(#

&(" … 𝐪)'"
)]∗
Y 𝐮99:- [.	∎ 

(57) 

 The product of the exponential formula given by Eq. (53) and Eq. (56) contained all information regarding the 
properties of the distribution of higher-order accelerations for this serial lower-pair serial kinematic chain. If n=4, 
the velocity, acceleration, jerk, and jounce vector fields on the terminal body of the general mC manipulator will 
be simultaneously described. 

6 Conclusions  

 A general method is proposed based on vector and quaternionic calculus and the properties of dual and 
multidual algebra to analyze the higher-order acceleration field of spatial kinematics chains. It is proved that all 
information regarding the properties of the distribution of higher-order accelerations field is encapsulated in the 
specified hyper-multidual quaternion. Furthermore, higher-order kinematics properties of lower-pair serial chains 
with nilpotent algebra are given with the product of the exponential formula. The results interest the theoretical 
kinematics, higher-order kinematics analysis of a serial manipulator, control theory, and multibody kinematics. 
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